Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space
نویسندگان
چکیده
منابع مشابه
A unified local convergence for Chebyshev-Halley-type methods in Banach space under weak conditions
We present a unified local convergence analysis for Chebyshev-Halleytype methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Chebyshev; Halley; super-Halley and other high order methods. The convergence ball and error estimates are given for these methods under the same conditions. Numerical examples are also provided in this stu...
متن کاملBall Convergence for a Computationally Efficient Fifth-order Method for Solving Equations in Banach Space under Weak Conditions
In the present paper, we consider a fifth order method considered in Jaiswal (2016) to solve equations in Banach space under weaker assumptions. Using the idea of restricted convergence domains we extend the applicability of the method considered by Jaiswal (2016). Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study. MS...
متن کاملConvergence Ball Analysis of a Modified Newton’s Method Under Hölder Continuous Condition in Banach Space
A modified Newton’s method which computes derivatives every other step is used to solve a nonlinear operator equation. An estimate of the radius of its convergence ball is obtained under Hölder continuous Fréchet derivatives in Banach space. An error analysis is given which matches its convergence order. 2010 Mathematics Subject Classification: 65B05, 47817, 49D15
متن کاملThe Convergence Ball of Newton-like Methods in Banach Space and Applications
Under the hypothesis that the derivative satisfies some kind of weak Lipschitz condition, sharp estimates of the radii of convergence balls of Newton-like methods for operator equations are given in Banach space. New results can be used to analyze the convergence of other developed Newton iterative methods.
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11081002